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Abstract: The effect of Ti substitution on the microwave and magnetostatic properties of nanostructured
hexagonal BaFej;_,TiyO19 ferrite composites is studied. The microwave permeability is measured in
the frequency range of 0.1-22 GHz by a coaxial technique. An analysis of the magnetostatic data
is made by the law of approach to saturation. The ferrimagnetic resonance frequencies calculated
from the magnetostatic data are consistent with those obtained from the microwave measurements.
The natural ferrimagnetic resonance frequencies are located in the frequency range of 15 to 22 GHz,
depending on the substitution level x. An increase in the amount of substitution elements results
in a low-frequency shift of the ferrimagnetic resonance frequency for samples with x < 1. With x
rising from 1 to 2.5, the resonance frequency increases. The results of the study demonstrate that the
tailored optimization of the nano-structure of a functional material is a robust tool to fine-tune its
microwave magnetic properties. The ferrites under study are promising materials to be applied as
functional coatings intended to control electromagnetic interference in microwave devices.

Keywords: hexaferrites; magnetic composites; microwave magnets; microwave permeability;
microwave coatings

1. Introduction

Magnetic materials with a high microwave permeability are needed in many fields of modern
technology, such as high-frequency electronics, electromagnetic compatibility applications, and 5G
communications. Generally, the applications of magnetic materials are divided into two categories [1].
The first of these is the energy conversion of electromagnetic fields and high-frequency signal
matching—such materials are typically required to have a low loss, especially magnetic, with the
real permeability being high. The second category implies materials having a high magnetic loss for
applications where the attenuation and absorption of a high-frequency magnetic field is required.
However, for both the cases, a typical requirement is low values of permittivity and conductivity.

For the radio frequency and low-frequency part of the microwave range (less than a few hundred
MHz), spinel ferrites can meet these requirements. For higher frequencies (above few gigahertz),
hexagonal ferrites and composites with ferromagnetic inclusions provide noticeable permeability
values. In the frequency range from 10 to 30 GHz, important for 5G applications, hexaferrites and
composites with hexaferrite inclusions are promising materials [2].
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The manufacturing of coatings to reduce electromagnetic interference in the microwave region
implies either plate materials or flexible sheets that can take the desired shape of radiating elements.
Composites with hexaferrite inclusions or films based on hexaferrites may be employed for that
purpose [3].

Hexaferrite films are advantageous in many respects. Films may be deposited directly on the
device surface. The hexagonal symmetry allows texturizing films with the desired configuration: c-axis
perpendicular to the film plane, along the film plane, or randomly distributed in the film plane [3-6].
For the case of composites, the most important factor which defines the effective permeability and
permittivity is the shape of the inclusions [7-9]. The chemical composition of hexagonal ferrites may
provide an additional opportunity to control the magnetic properties of the composites.

For example, M-type hexagonal ferrite BaFe;,019 (BaM ferrite) possesses strong magnetocrystalline
uniaxial anisotropy along the c-axis, with the anisotropy field of H, = 17 kOe and the highest
saturation magnetization among hexaferrites, Ms = 380 G [10]. The ferrimagnetic resonance frequency
of un-substituted BaFe 1,019 is about 50 GHz [11]. A change in the composition of this hexaferrite by
replacing iron with other elements leads to a decrease in the anisotropy field and even to a change in
the type of anisotropy from the easy axis to the easy plane [11-15].

The operating frequency range for magnetic materials is well known to be limited by the frequency
of the Ferromagnetic/Ferrimagnetic Resonance (FMR) f; [16]. For most bulk magnets, including
hexaferrites with the easy axis anisotropy type:

fr :VHa (1)

where y = 2.8 MHz/Oe is the gyromagnetic ratio and H, is the effective magnetic anisotropy field.
For hexaferrites with the easy plane anisotropy type, the natural resonance frequency differs from

Equation (1) and is given by:
fr =y+HeH © 2)

where Hg and H, are the anisotropy fields directed along the c-axis and perpendicularly to the c-axis,
respectively. The resonance frequency for hexaferrites with c-axis anisotropy is typically higher than
that for the case of the easy plane anisotropy, because the anisotropy field H, is larger than VHgH, [17].
From the archived literature, Hg is about 10 kOe and H , is about a few hundred Oersted [10,18].

The substitution of iron ions also affects the saturation magnetization and coercivity [11,12,19].
Therefore, the doping of barium hexaferrite with various ions may be helpful for tailoring the static
and dynamic magnetic properties and, consequently, tuning the operating frequency range.

In this study, titanium was chosen as an efficient dopant for barium hexaferrite property
modification. Among a huge number of studies of BaM hexaferrites with various substituting elements,
titanium-substituted ferrites are not sufficiently investigated. The anisotropy field as a function of the
substitution level is given, and the FMR frequency is calculated in [13]; however, there is a lack of data
on the microwave properties.

This study focuses on the effect of Ti ion substitution on the magnetic and microwave properties
of hexaferrite composites of BaFe1,_,TiyO19 with x = 0.25 to 2.5. An analysis of the magnetostatic data
is made by the law of approach to saturation. The ferrimagnetic resonance frequencies calculated
from the magnetostatic data are consistent with those obtained from the microwave measurements.
The results demonstrate that the tailored optimization of the nano-structure of a functional material is
a robust tool to finetune its microwave magnetic properties.

2. Materials and Methods

The stoichiometric amounts 99.0-99.5% of pure oxides and carbonate precursors, Fe;O3, BaCOj3,
and TiO,, were thoroughly mixed using a ball mill for 2 h in a wet medium, followed by drying in
an oven. The dried homogeneous milled powders were compacted into tablets and were sintered at
1400 °C for 5 h. The sintered samples were ground into a fine powder.
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their impedance and propagation constant are close to those for the TEM wave. The smaller the sample
under study is, the closer the frequency of the resonance will be to the value of the cut-off frequency
for the corresponding mode propagating in an empty waveguide [20].

For this reason, the measurements could be made at frequencies above 18 GHz, up to 22 GHz,
with great care considered in the interpretation of the measured data. At these frequencies, the magnetic
loss peak corresponding to the ferrimagnetic resonance is easily distinguished against the background
of the error. Above this range, a complex and poorly interpreted resonant pattern occurs, combining
the effects of all the waves propagating in the line.

The volume fraction of the powder was 20% for samples with x from 0.25 to 1.3 and 35% for
samples with x > 1.5. The need for a higher concentration of samples with x > 1.5 was related to a
decrease in the sensitivity of measurements for samples with a high titanium content. The thickness of
all the samples was 2 mm.

The hysteresis loops were measured with a vibrating sample magnetometer (VSM) in the field
range of £15 kOe. The samples for VSM were made in a disc with a diameter of 7 mm, thickness of
1.5 mm and volume fraction of the ferrite less than 2%.

The analysis of the magnetostatic data was made from the law of approach to saturation (LAS)
that governed the magnetization M behavior of a polycrystalline magnetic material in high magnetic
fields [21]:

MH) =M1-2-By m 3)
H H2 1

The effective magnetic field H is the difference between the external magnetic field and the
demagnetization field, M; is the saturation magnetization of the material, and X, is the high-field
susceptibility. Because of very low volume concentration, the fine particles in the paraffin may be
considered as isolated particles without magnetic interaction. Therefore, the demagnetizing factor was
taken as 1/3 due to the stone-like shape of the particles. The second term in the brackets, A/H, describes
the behavior of inhomogeneous ferromagnets and usually vanishes in high fields [17,22]. The third
term B/H? is related to the magnetocrystalline anisotropy. For hexagonal ferrites, B = —Ha?/15, assuming
Kj >> Ky, where K; and K are the first and second anisotropy constants [21]. The values of M; and
B may be derived by fitting the hysteresis loops with Equation (3), assuming that the fields are high
enough and that the second term in the brackets may be neglected.

The coercivity H. was found from the measured hysteresis loops.

All the microwave and magnetostatic measurements were performed at room temperature.

3. Results and Discussion

3.1. X-ray Difraction and Chemical Composition

The measured X-ray patterns are shown in Figure 2. A comparison of the obtained data with
the diffraction pattern of non-substituted ferrite BaFe;,0O19 showed that the samples with an x value
ranging from 0.25 to 1.5 comprise a single phase. This confirmed that the synthesis of samples was
carried out successfully. Samples with x > 1.5 showed the presence of weak additional peaks.

The structural parameters and chemical formulas with the calculated substitution level are listed
in Table 1. With x increasing, the lattice parameter a is almost constant, but parameter c increases,
because the average radius of Ti** (0.627 A)is larger than that of Fe3* (0.550 A) [11]. The cell volume
rises with the substitution because of an increase in the c-axis by 0.3%. A similar result was obtained
for Co-Zr-substituted BaM ferrite [12], and may indicate that substitution ions preferentially occupy
some of the five crystallographic iron sites.
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Figure 4. The saturation magnetization Ms derived from LAS for BaFe12~«TixOno.

Figure 4. The saturation magnetization M; derived from LAS for BaFe;;_, TiyO19.
Figure 4. The saturation magnetization Ms derived from LAS for BaFe12~TixOu.

The variation in coercivity H. with the substitution x is shown in Figure 5. The coercivity rapidly
decreases from 218 to 62 Oe, with the x value changing from 0.25 to 1. At higher substitution levels,
from x = 1 to 1.5, the coercivity changes slowly, after which it increases again and achieves the value
H. =80 Oe for x = 2.5.

The anisotropy field dependence derived from LAS is shown in Figure 5 with the black solid
line. As the Ti substitution increases from 0.25 to 1, the anisotropy field reduces from 12 kOe to
5.8 kOe almost linearly. The increase in the Ti substitution from 1 to 1.3 does not affect significantly the
anisotropy field, but a further increase in x is accompanied by a gradual increase in the anisotropy
field. Such behavior of the anisotropy field may be caused by a change in the anisotropy type in the



tings 2020, 10, x FOR DEER RE 11
K3e dmost llme(ag . The increase in the Ti substitution from 1 to 1.3 does not affect significantly 7 the

amsotfﬁ%%%lo%but % fpathepngsass M&%&Cﬁompﬁ% 3predvpldncresss i the MR
fh gld. R%Cﬁae 1 Bstﬁutthgna{}{%%gg Y disld oy becapised by.a.g anﬁel&lre&uc%e?frﬁmwe%13
BRge, i‘m qng% Lo, 3T e%h%l%e%%g@%e%?g&oaa}fﬁ r%%ﬁ%atmﬁ%rggé@t&?a 2% sngno 10 W 5
3 ’bu’%FEIf_ZX watx>1.1 [10]9( Similarly, the s&%shtuhgagé Fe ions t eylr(li%er ead

aniso ro er mmcrease in X 1s accomparnie mcrea amso ro Y

;thaggps 51;918¥ SYRRShiso 1r20&)l Fhidieg ol;}s] e Catailélel q%rog X}}éer%dg fr amg%g(s)t‘fmﬂ})@;% e

e enotﬁ_%l asllilt mlllggl%smcebar ¥ Bges on a%ﬂﬁuﬁ? aniso a;l(l)% lﬁ‘ S a ?&%ﬁ e C-axis. 8{1 e eas¥

RIRRS IR ERS (O qtice3 110D BisinhikdyiytHtbesbbitittiomb FEdGon by Gazgidoddd bon

The Coercw e erilce Oﬁ slmmst tlor&fzvel hz}s a shﬁ%hﬁmresemﬁles %&s&% ARH
ﬁel% g eads to e conc usion tﬁﬁt@% above ua tﬁ Eéﬁ%eﬁlma% of thefﬁnﬁ%%

figlds is ac ﬁ]&rate %ﬁough because the value of H. is closely related to the anisotropy fields [12,24].

The coercivity dependence on the Ti substitution level has a shape that resembles the anisotropy
field dependence. This leads to the conclusion that the above qualitative estimation of the anisotropy
fields is accurate enough because the value of He is closely related to the anisotropy fields [12,24].

Figre 3. Fhe oty Tt clttec egn R s el ok P o R el
o aﬁ?ef& Qs Rledlsctegoinst heovolme fraction, Lines are auides for eyes.

The CoerC11\51t deFendence on the Ti substitution level has a shape that resembles the anisotropy
fi %c{\ﬁéé?e%e o eﬁei}dﬁftémbeﬂf@mﬂmma thah thegbevecqualitalive estimatismpmisthesamistiropy
fieldsAis Bisashibenepipaltetg ufetivadite refthiplimaMishid i ébataitito lguaso tevprafields Wiere shade
for the microwave measurements In accordance with Snoek’s law [18,25], a strong decrease in the
SR MR jethiiss with an increasing substitution level results in a decrease in the microwave

Pef%%%@%%%@%@%%ﬁ%@é{%&%ﬂ%%%%%t RiheTRarmacs.
FESAHRDSdaRenge ARRAHS IR RBRISR I Bal PP TR S el aRedaaetinniat
%%%W%@t&%ﬁ%@%&%@%ﬁ%@ﬂ% iR
R PRAAI S SN B RS R SR B A SRR AOR SRS easitivi g Fhicermsassirech
f¥ﬁﬂqifé}féy4fé1?é}éfé}{€e®ﬂﬁ%@%&lﬁ§§sff5§%mﬂﬁés%ﬁh%h%%%@ff%ﬁéﬁt%ﬁiﬁf‘eff%&%h@f
feariteeifsslViTh IR RCo. A IR ih thee KR HRfecireH At dRes nRft R o astliffimthee
reseRRAIcel FRaeaISEy Sad it aaeepprhin de s ennpre diffaraRhecsriatationhs.

Figure 6. The measured frequency dependence of magnetic loss for the composite samples of
BaFe12-TixO19 with different volume fractions of ferrite; x = 1.25.
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The measured frequency dependencies of microwave permeability with different substitution
levels are shown in Figure 7. It is seen that the permeability exhibits a strong frequency dispersion
at frequencies from 12 to 22 GHz, which is attributed to the natural ferrimagnetic resonance.
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Figure 7. The measured fre(zlquency depengence cgif permez}bﬂity for t]};_e composite samples of BaFelz,x"liixolg f
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aF{alz-xT' 9{9: l(ea1) x from 0,75 to §5§ the volume fraction of the ferrite powder is 20%; (b) x from 1.5 to
raction of the ferrite powder is 35%.
2.5, the volume fraction of the ferrite powder is 35%.

The higher-order modes resonances on the sample length lead to the slight distortions at frequencies

of 8 Aits AT CFALMANSIESWRANSRuAR dbficsAtRRIBASBE YboleandiootherelimRbiistortietiot
EagrRTesonindestdaare 15554 dor. samilenavitiho Qi CoRseriF iR plesutk Atbalde
ts RSVl dha dishaRsfaston geramanpes ety setol AP ddsaldmenbishoheyrthr SRR liominF
plesamplerarqaitikited telnseiavasvidewaling tHhigherifrsAnensifs i LoRRAP JREISHIS A
REQERALY Slfsf%r‘ﬁﬁ]\lﬁfnm gg%ﬁﬁ{géqg%ggﬁ%ﬂg& hé‘]i-_ to a large error in de.termining the peak of
magnelipiask rpve whighithe feduency aldferimpsnsiiomsnaniededatsiingd HOT: substitution.
The rb86nBREX rrUGUeny FigtigAsterresisnss {16 wendsngs ¢k therEMRifrequensistutnitodi
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§Hmt&t§mwr%w@ﬁ.Or@etgrﬁyﬂofdlrﬁb@ﬁnt DIREWSAL SRS TERRB IR SlRIRS) eoantaRt ity
thd ahig8igbpy ety Byshquarian Py sEruithyisthep srey saliskdinghdnFigus & rhopsertha repanancs.
fiegurapbealiaied fromdbaraitaorndsidBr s afianity delery Jssrepamsibiaanes E e ten
NG PP IR MU 1y 1B MGt beiearase. ebifiefion of theAnisatERRsbERRE I AR
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frequencies and values Hg by Equation (2). The calculation gives the values for H, from 4 to 8 kOe
for samples with x from 1.3 to 2.5, which is too high, according to the literature [10,17,18]. It can
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4. Conclusions

4. Conclusions
A set of M-Type hexagonal ferrites BaFe;,_, Ti,O19, with x varying from 0.25 to 2.5, has been

invedtigefe@! MielyRghsrReanahiaryirsrBakeiwhi-Rir iDL SARKBBTI RIS Al Ls st RN
egtigaterdntemashetraiainena i atehawi theb fhedrteserrecbd ivane ipduces A ibriankal
Aenteassitbtha satvald o inagneiratiorrdie aisotopyobirld AeBerseior eiRrerlng ereasss
Bemfzateitand dsasoridp ¢ Autthesiericin Trhhcorssivi thbehayienydthinpiepsingdbpugive
A dussepienthioanizaueRfild dersadenceyJhechanse dathamagnetosiaticpsaperties may be
induqed byithewaodibicabianed SharrisatprRyatera SvabheRaRRtie tiyhetsymiantta for x value
rangdd MOy 239 Brame tistph Hheamipice i e AgReeneRtidedheognetpialit dRIGSY
Yalige BEstolbonG 220t dnttihBoRAU B S B ast el AsReRAnsA dregvendeaig eplorals d i Big
{EegPFRREnTNSH LR £ st AP RIS RN doabitied iR M WR¥o A S abFICES W

ﬁ@q%pz@é)éqé&fgﬂ)&tenhal interest for customized functional coating applications in microwave
devices and high-speed electronics.
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